Publications
see my google scholar for the most updated list
Large graph learning
B. Zhou, Y. Sun, R. Babenezhad. Fast online node labeling for very large graphs. International Conference on Machine Learning,.2023. (link)
B. Zhou, Y. Sun, R. Babanezhad, X. Guo, D. Yang, Y. Xiao. Iterative Methods via Locally Evolving Set Process. Accepted Neurips 2024.
Y. Sun. On the scalability of large graph methods for kernel-based machine learning. Allerton Proceedings. (ieee)
Natural language processing and expressiveness
X. Bai, Y. Sun, N. Balasubramanian. Continual Learning with Global Alignment. Accepted Neurips 2024.
X. Bai, Y. Sun, N. Balasubramanian. Does RoBERTa Perform Better than BERT in Continual Learning: An Attention Sink Perspective? Accepted COLM 2024. (arxiv)
X. Bai, J. Shang, Y. Sun, N. Balasubramanian. Learning for Expressive Task-Related Sentence Representations. 2023 (arxiv)
Optimization
M. Lee, Y Sun. Almost multisecant BFGS quasi-Newton method. Asilomar 2024.
Y. Huang, E. Luo, S. Bak, Y. Sun. On the Difficulty of Intersection Checking with Polynomial Zonotopes. International Symposium on Automated Technology for Verification and Analysis. 2023. (link) (arxiv)
Z. Chen, Y. Sun. Reducing Discretization Error in the Frank-Wolfe Method. 2023. International Conference on Artificial Intelligence and Statistics (link)
X. Jiang, Y. Sun, M. S. Andersen, L. Vandenberghe. Minimum-rank positive semidefinite matrix completion with chordal patterns and applications to semidefinite relaxations. Applied Set-Valued Analysis and Optimization (link) (dtu)
Frank Wolfe method
B. Zhou, Y. Sun. Approximate Frank-Wolfe Algorithms over Graph-structured Support Sets. ICML 2022. (arxiv)
Y. Sun, F. Bach. Screening for a Reweighted Penalized Conditional Gradient Method. Submitted to Open Journal of Mathematical Optimization (OJMO). (arxiv) (github)
Structured sparsity and optimization
Y. Sun, F. Bach. Safe Screening for the Generalized Conditional Gradient Method. Technical report, arXiv:2002.09718, 2020. (pdf) (CIRM slides)
Y. Sun, H. Jeong, J. Nutini, M. Schmidt. Are we there yet? Manifold identification of gradient-related proximal methods. AISTATS 2019 (aistats) (opt-online) (poster) (ICCOPT)
Gauges and gauge duality
Z. Fan, H. Jeong, Y. Sun, M. Friedlander. Atomic Decomposition via Polar Alignment: The Geometry of Structured Optimization. Foundations and Trends(r) in Optimization (2020). (pdf)
Y. Sun, M. Friedlander. One-Shot Atomic Detection. IEEE CAMSAP 2019 (IEEE) (pdf)
Y. Sun, R. Estrin, M. Friedlander. Approximate methods for phase retrieval via gauge duality (arxiv) (SIAM CSE slides)
Encoding for distributed optimization
C. Karakus, Y. Sun, S. Diggavi, W. Yin. Redundancy Techniques for Straggler Mitigation in Distributed Optimization and Learning. JMLR 2019. (jmlr)
C. Karakus, Y. Sun, S. Diggavi, W. Yin. Straggler Mitigation in Distributed Optimization Through Data Encoding. NIPS 2018 (nips)
C. Karakus, Y. Sun, S. Diggavi. "Encoded distributed optimization." ISIT 2017 (pdf)
Deep learning
W. Wang, Y. Sun, E. Eriksson, W. Wang, V. Aggarwal. Wide Compression: Tensor Ring Nets. CVPR 2018 (cvpr) (arxiv)
D. Zhang, Y. Sun, B. Eriksson, L. Balzono. Deep Unsupervised Clustering Using Mixture of Autoencoders. (arxiv)
Natural language processing and data mining
Z. Yao, Y. Sun, W. Ding, N. Rao, H. Xiong. Discovery of Evolving Semantics through Dynamic Word Embedding Learning. WSDM 2018. (wsdm) (arxiv)
Y. Sun, N. Rao, W. Ding. A Simple Approach to Learn Polysemous Word Embeddings (arxiv)
V. Rakesh, W. Ding, N. Rao, Y. Sun, A. Ahuja, C. Reddy. A Sparse Topic Model for Extracting Aspect-Specific Summaries from Online Reviews. WWW 2018 (www)
Chordal decomposition
Ph.D. Thesis: Decomposition methods for semidefinite optimization
Y. Sun and L. Vandenberghe. Decomposition methods for sparse matrix nearness problems. SIAM. J. Matrix Anal. & Appl., 36(4), 1691–1717, 2015, (pdf) (code directory), (code zip) (poster)
Y. Sun, M. S. Andersen, and L. Vandenberghe. Decomposition in Conic Optimization with Partially Separable Structure.SIAM Journal on Optimization, 24(2):873-897, 2014. (pdf) (code directory) (code zip) (presentation)
Belief propagation and spectrum sensing
F. Penna, Y. Sun, L. Dolecek, and D. Cabric. Detecting and Counteracting Statistical Attacks in Cooperative Spectrum Sensing. IEEE Transactions on Signal Processing, 60(4):1806-1822, April 2012. (IEEE)
F. Penna, Y. Sun, L. Dolecek, and D. Cabric. Joint Spectrum Sensing and Detection of Malicious Nodes via Belief Propagation, IEEE Global Telecommunications Conference, pp.1-5, 5-9 Dec. 2011. (IEEE)
LDPC
Y. Sun and L. Dolecek. Complexity analysis of interior point methods for LP decoding, 2011 Conference Record of the Forty FifthAsilomar Conference on Systems, Signals and Computers, pp.659-663, 6-9 Nov. 2011. (IEEE)
SMST. Yazdi, H. Cho, Y. Sun, S. Mitra, L. Dolecek. Probabilistic analysis of Gallager B faulty decoder. Communications (ICC), 2012 IEEE International Conference on, 7019-7023. (IEEE)
Optical communications
X. Zhou and Y. Sun. US 8682182 B2: Blind carrier frequency offset detection for coherent receivers using quadrature amplitude modulation formats. Patent. (link)
X. Zhou and Y. Sun. US 8908809 B2: Complexity reduced feed forward carrier recovery methods for M-QAM modulation formats. Patent. (link)
Adaptive filters
Y. Sun, J. Chen and K. K. Parhi. Multi-delay block frequency domain adaptive filters with sparse partial subblock update. 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, pp.206-209, 1-4 Nov. 2009. (IEEE)
Textbook chapters
J. Li, Y. Sun, and L. Vandenberghe. Chapter 3: Linear and Quadratic Optimization in Electrical Engineering. In Advances and Trends in Optimization with Engineering Applications. SIAM, 2017. (siam)
contact: yifan.0.sun at gmail dot com